OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

4753/1

Methods for Advanced Mathematics (C3)
Thursday 8 JUNE $2006 \quad 1$ horning 30 minutes
Additional materials:
8 page answer booklet
Graph paper
MEI Examination Formulae and Tables (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72 .

Section A (36 marks)

1 Solve the equation $|3 x-2|=x$.

2 Show that $\int_{0}^{\frac{1}{6} \pi} x \sin 2 x \mathrm{~d} x=\frac{3 \sqrt{3}-\pi}{24}$.

3 Fig. 3 shows the curve defined by the equation $y=\arcsin (x-1)$, for $0 \leqslant x \leqslant 2$.

Fig. 3
(i) Find x in terms of y, and show that $\frac{\mathrm{d} x}{\mathrm{~d} y}=\cos y$.
(ii) Hence find the exact gradient of the curve at the point where $x=1.5$.

4 Fig. 4 is a diagram of a garden pond.

Fig. 4
The volume $V \mathrm{~m}^{3}$ of water in the pond when the depth is h metres is given by

$$
\begin{equation*}
V=\frac{1}{3} \pi h^{2}(3-h) . \tag{2}
\end{equation*}
$$

(i) Find $\frac{\mathrm{d} V}{\mathrm{~d} h}$.

Water is poured into the pond at the rate of $0.02 \mathrm{~m}^{3}$ per minute.
(ii) Find the value of $\frac{\mathrm{d} h}{\mathrm{~d} t}$ when $h=0.4$.

5 Positive integers a, b and c are said to form a Pythagorean triple if $a^{2}+b^{2}=c^{2}$.
(i) Given that t is an integer greater than 1 , show that $2 t, t^{2}-1$ and $t^{2}+1$ form a Pythagorean triple.
(ii) The two smallest integers of a Pythagorean triple are 20 and 21. Find the third integer.

Use this triple to show that not all Pythagorean triples can be expressed in the form $2 t, t^{2}-1$ and $t^{2}+1$.

6 The mass $M \mathrm{~kg}$ of a radioactive material is modelled by the equation

$$
M=M_{0} \mathrm{e}^{-k t}
$$

where M_{0} is the initial mass, t is the time in years, and k is a constant which measures the rate of radioactive decay.
(i) Sketch the graph of M against t.
(ii) For Carbon 14, $k=0.000121$. Verify that after 5730 years the mass M has reduced to approximately half the initial mass.

The half-life of a radioactive material is the time taken for its mass to reduce to exactly half the initial mass.
(iii) Show that, in general, the half-life T is given by $T=\frac{\ln 2}{k}$.
(iv) Hence find the half-life of Plutonium 239, given that for this material $k=2.88 \times 10^{-5}$. [1]

4

Section B (36 marks)

7 Fig. 7 shows the curve $y=\frac{x^{2}+3}{x-1}$. It has a minimum at the point P . The line l is an asymptote to the curve.

Fig. 7
(i) Write down the equation of the asymptote l.
(ii) Find the coordinates of P.
(iii) Using the substitution $u=x-1$, show that the area of the region enclosed by the x-axis, the curve and the lines $x=2$ and $x=3$ is given by

$$
\int_{1}^{2}\left(u+2+\frac{4}{u}\right) \mathrm{d} u .
$$

Evaluate this area exactly.
(iv) Another curve is defined by the equation $\mathrm{e}^{y}=\frac{x^{2}+3}{x-1}$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y by differentiating implicitly. Hence find the gradient of this curve at the point where $x=2$.

8 Fig. 8 shows part of the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\mathrm{e}^{-\frac{1}{5} x} \sin x$, for all x.

Fig. 8
(i) Sketch the graphs of
(A) $y=\mathrm{f}(2 x)$,
(B) $y=\mathrm{f}(x+\pi)$.
(ii) Show that the x-coordinate of the turning point P satisfies the equation $\tan x=5$.

Hence find the coordinates of P .
(iii) Show that $\mathrm{f}(x+\pi)=-\mathrm{e}^{-\frac{1}{5} \pi} \mathrm{f}(x)$. Hence, using the substitution $u=x-\pi$, show that

$$
\int_{\pi}^{2 \pi} \mathrm{f}(x) \mathrm{d} x=-\mathrm{e}^{-\frac{1}{5} \pi} \int_{0}^{\pi} \mathrm{f}(u) \mathrm{d} u .
$$

Interpret this result graphically. [You should not attempt to integrate $\mathrm{f}(x)$.]

